0

Anomaly detection using streaming analytics & AI

An organization’s ability to quickly detect and respond to anomalies is critical to success in a digitally transforming culture. Google Cloud customers can strengthen this ability by using rich artificial intelligence and machine learning (AI/ML) capabilities in conjunction with an enterprise-class streaming analytics platform. We refer to this combination of fast data and advanced analytics as real-time AI. There are many applications for real-time AI across businesses, including anomaly detection, video analysis, and forecasting. 

In this post, we walk through a real-time AI pattern for detecting anomalies in log files. By analyzing and extracting features from network logs, we helped a telecommunications (telco) customer build a streaming analytics pipeline to detect anomalies. We also discuss how you can adapt this pattern to meet your organization’s real-time needs.

How anomaly detection can help your business

Anomaly detection allows companies to identify, or even predict, abnormal patterns in unbounded data streams. Whether you are a large retailer identifying positive buying behaviors, a financial services provider detecting fraud, or a telco company identifying and mitigating potential threats, behavioral patterns that provide useful insights exist in your data. 

Enabling real-time anomaly detection for a security use case

For telco customers, protecting their wireless networks from security threats is critical. By 2022, mobile data traffic is expected to reach 77.5 exabytes per month worldwide at a compound annual growth rate of 46%. This explosion of data increases the risk of attacks from unknown sources and is driving telco customers to look for new ways to detect threats, such as using machine learning techniques. 

 A signature-based pattern has been the primary technique used by many customers. In a signature based pattern, network traffic is investigated by comparing against repositories of signatures extracted from malicious objects. Although this technique works well for known threats, it is difficult to detect new attacks because no pattern or signature is available. In this blog, we walk through building a machine learning-based network anomaly detection solution by highlighting the following key components:

Read more: https://cloud.google.com/blog/products/data-analytics/anomaly-detection-using-streaming-analytics-and-ai

Reply Oldest first
  • Oldest first
  • Newest first
  • Active threads
  • Popular
Like Follow
  • 1 mth agoLast active
  • 1Views
  • 1 Following

Quick Resources

CompTIA BizTech Podcast
Communities and Council YouTube Channel